00-S01 Efficient Spatial-Spectral Compression Of Hyperspectral Data

نویسندگان

  • Mark R. Pickering
  • Michael J. Ryan
چکیده

-Mean-normalised Vector Quantization (M-NVQ) has been demonstrated to be the preferred technique for lossless compression of hyperspectral data. In this paper, a jointly optimised spatial M-NVQ/spectral DCT technique is shown to produce compression ratios significantly better than those obtained by the optimised spatial M-NVQ technique alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains.

An efficient method and system for compressive sensing of hyperspectral data is presented. Compression efficiency is achieved by randomly encoding both the spatial and the spectral domains of the hyperspectral datacube. Separable sensing architecture is used to reduce the computational complexity associated with the compressive sensing of a large volume of data, which is typical of hyperspectra...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Compressive hyperspectral imaging by random separable projections in both spatial and spectral domains

An efficient method and system for compressive sensing of hyperspectral data is presented. Compression efficiency is achieved by randomly encoding both the spatial and spectral domains of the hyperspectral datacube. Separable sensing architecture is used to reduce the computational complexity associated with compressive sensing of large data, which is typical to hyperspectral imaging. The syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015